Imperial College
London

Lecture 13

Echo Synthesizer & Challenges
Explained

Peter Cheung
Department of Electrical & Electronic Engineering
Imperial College London

URL: www.ee.imperial.ac.uk/pcheung/teaching/E2_CAS/
E-mail: p.cheung@imperial.ac.uk

PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 1

Lecture Objectives

& To revisit some of the issues that came up during the laboratory
experiments

To provide some guidelines on how to perform diagnosis when things
don’t work

To provide explanations on Lab 6

*

To explain how the ADC works

To explain some of the major modules used in the experiment
To explain the idea of offset binary vs 2’s complement

To explain the ALLPASS module and its use

To explain how echo may be synthesized

L JIK 2R JER N R 2

PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 2

This lecture is designed to complement and explain Lab 6 experiment.

How to minimize problems?

1. Top level module name and file name (i.e. *.v) must match. This rule only
applies to top-level module connected to physical pins.

2. Always check each .v file for syntax error with Processing > Start >
Analyze and Elaborate

3. Make sure that you have included ONLY the files used in your design
with Project > Add/Remove files in Project

4. Make sure that you have specify the correct top-level entity by first open
the top-level module file, and click Project > Set as Top-level Entity

5. Always check for correctness of your design with Processing > Start >
Start Analysis and Synthesize, and fix any errors

6. Check that you have assigned top-level ports to physical pins (done by
editing the <project_name>.qsf file).

7. Check that you have specified your device to be 10M50DAF484C7G

8. Edit .gsf file to add pin assignment immediately after creating the project

PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 3

This slide is self explanatory. These are some steps you should take in order
to minimize problems that you may encounter.

Common mistakes

1. Bad organisation of design folder — missing versions, files, folder etc.

2. Wrong case for signal names (all names are case sensitive)

3. Wrong number or wrong order of signals when instantiating a module

4. Different number of bits used in signals at top-level and lower modules

5. Missing pin assignments or use the wrong pin names

6. You may use multiple always_ff @ (posedge/negedge clk) blocks in the
SAME module, but must not do assignment to the same signal more than
once

PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 4

Here is a list of common mistakes students had in the lab.

Lab 6 Task 3 Explained

«max 10
FPGA
data_out[9:0]
g : ‘SF:fl MCP4921
) interface
—ct i » DAC

S50MHz %

— >

processor
data_in[9:0]
P o SPI
data_valid i
R . . T interface MCP3201
SOMHz sart | o [ARe
i
S50MHz
S50MHz I50KHz
» clktick i
,,,,,,,,,,,,,, tick
PYKC 25 Nov 2025 EE2 Circuits & Systems e s

This shows a “processor” module, which in Task 3 does an ALL PASS function.
That is, it takes a sample from the ADC and pass this to the output and to the
DAC. Therefore everything is simply passed from input to output. In Task 4,
we create other “processor” module that perform other processing
functions.

Combining analogue and digital systems

& X3 amplifier & anti-aliasing LP filter
¢ ADC produces a data_valid pulse at end of conversion

FPGA
U data_out[9:0] R SPI

interface | MCP4921
< processor>

tick_10k

DAC

spi2dac
Y

50MHz
e

data_in[9:0]

A

SPI

C data_valid)) i i

N A, data_vall ° B interface MCP3201 |» 1 ?ntll
50MHz sta [~ ADC aliasing x3 I-:]]

3 filter o
1
50MHz
50MHz 10kHz I
clktick Tick_10K 1.65V M[\r N S—
PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 6

This is the block diagram of the basic framework used for Lab 6 Task 3 and 4.

The analogue part of the system includes a x3 amplifier which provides an
audio signal for the full 3.3V range.

The Sallen-Key lowpass filter acts as an anti-aliasing filter (from Signals and
Systems course) to avoid corrupting signal in the lower frequency band. This
LP filter has a corner frequency of around 1kHz. Given that our sampling
frequency is 50kHz, we only need to suppress signals beyond 25kHz. We
could have used a LP filter with much higher corner frequency, e.g. 10kHz.
This will work well for our system.

The two main modules on the FPGA are spi2dac.v and spi2adc.v. They
provide SPI interface to the DAC and ADC respectively. The control circuit is
simple — a clock tick circuit generating a 50 KHz sampling clock.

Lab 6 Task 3 — allpass.v (offset correction)

A (} P N hf 2’s complement
Processor —”allpass" p neter ADC_OFFSET = 10'd512;
512 i B - cociep DAC_OFFSET = 10'd512;
processing offset correction
assign x = fdata_in[9:@] - ADC_OFFSET;

data_out[9:0]
—p

512 AV/NIN 2SS10n Y = X; offset binary

D-FF

en

5 pu PULSE (.clk(sysclk
data_in[9:0] .in(data_valid), A
— La—
ooz
i 512" always @(posedge
—> !) if |(lenable ==
50MHz - data_valid data_out¥c= y + DAC_OFFSET;
L pulse_gen
1
1
1
PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 7

The ALL PASS modaule is slightly more complex than it may appear.
Data_in[9:0] is used to represent the analogue signal input (which is bipolar)
as offset binary. There is an offset of around 512 if the input is connect to
zero (no signal). The output data_out[9:0] also has an offset. To get Vout =
0V, you need to send the binary number 512.

If you are to process the signal using normal arithmetic operators such as +, -
and *, you need to use 2’s complement number system. Therefor the ADC
data is first offset correct by subtracting the offset 512 from the converted
data to yield x[9:0]. The actual processing step is simply to store this data in
a register in 2’s complement form. Then the output y[9:0] is again converted
back to offset binary for the DAC to output. This is done by adding 512 to
y[9:0].

If allpass.v and lab6task3.v are both correctly specified, you can send in the
ADC a recorded speech signal via the 3.5mm cable, and hear the same
speech on the speaker.

Lab 6 Task 4 — single echo synthesizer

Sound y(t) =x(t) + B x(t-T)

source x(t’) - |
’ m \\l . fifo o
(aRmEEL » U
/1] .

data[9..0] q[9..0]

(—.

Echo path Echo(stlgrr)\al k| wrreq full
B x(t- -
&.

rdreq

clock
Sound

> + Output with echo
source x(t) vit)
Delay by K samples

Z-K

Single echo of source signal

Signal flow-graph is simple: a K samples delay block, a gain block and an adder

Use First-in-First-out memory to store sample: need a status signal “full” to indicate FIFO full
Sampling frequency = 50KHz, theref a 8192 word FIFO provides 0.1638 second delay

L K R N 2

PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 8

The final task is to create an echo synthesizer. The basic idea is simple: an
echo is recreated when the listener receive the source signal via a direct path
AND a delayed echo path as shown.

In order for this to work, we need a delay component in the FPGA system.
The easiest way to achieve this is to use a first-in-first-out (FIFO). | will explain
exactly what a FIFO is in a later lecture. For now it is sufficient for you to
know that a FIFO block has data[9:0] as input, and g[9:0] as output. The
first sample that goes in is the sample the first sample that comes out. There
is a write request signal wrreq which is asserted when you want to write a
word into the FIFO. Similar a rdreq signal is asserted when you want to read
a word out from the FIFO. There is a synchronising clock signal.

Finally if the FIFO is full (in this case storing 8192 samples already), then the
full signal goes high.

This FIFO will provide 0.1638 second delay if the sampling clock is 50KHz.

Lab 6 Task 4a — single echo synthesizer

Processor — simple echo

Echo synthesizer (feedforward) | offset correction
+ E data_out[9:0]
:% »> : —>
: + Output with echo
fifo_state ' L vit)
i Delay bg(Ksamples
full 1 x[9:0] + data_in[9:0]
rdreq data[9:0] |« . > |
8192x10 :
—lai0:0] FIFO rosnf
50MHz i = :
¢ Computation in 2’'s complement for signed integers
¢ x 0.5 = signed right-shift by 1-bit (sign-extension)
& Verilog: y[9:0] = x[9:0] + {q[9], q[9:1]};
& Additional signal to processor module: data_valid = a high pulse whenever there is a new data_in
¢ Need to fill to First-in-First-out memory before starting to read data off it — hence FSM

PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 9

Here is the block diagram of the processor module for a single echo
synthesizer. The FIFO control circuit is quite simple, the FSM and the AND
gate ensure that at the start, the FIFO is not read until it is completely filled.
The AND gate blocks the wren pulse from the pulse generator. Therefore for
the first 8192 conversions, the FIFO is only written to, and nothing is taken off
it.

When the FIFO is full, the FSM output goes high, and from now on, every
data written into the FIFO, another data value 8192 samples earlier is taken
off the FIFO as the echo signal. This is then scaled by a constant 0.5 (which is
an arithmetic right shift with sign extension).

Lab 6 Task 4b — multiple echoes synthesizer

Sound

Output with
source x(t) echo y(t)
Processor — multiple echo Delay by KKsampIes P
7-
Echo synthesizer (feedforward) | offset
1
i data_out[9:0]
Px % > Y | —>
fifo_state| le—
FSM 50MHz
data_in[9:0]
full —
rdreq data[9:0] |«
8192x10 !
< ql9:0] FIFO :
—> wrreq Wreni pulse_gen |—— data_valid
50MHz .
¢ Instead of feedforward only, this uses a feedback loop
¢ To avoid instability, you must SUBTRACT delayed echo signal instead of add
¢ FIFO now stores y[9:0] output, and NOT input
PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 10

A slight modification create a mult-echo synthesizer. Here we put the delay
element in a feedback path. Note that you MUST perform a subtract instead
of an add, otherwise the system has positive feedback and will become
unstable.

10

Challenges

Lab 1 — 6: Teaching you by holding your hands, with a few “test yourself’ tasks

Challenges: Open-ended problems to challenge you. Give you a chance to “showoff’ what you
have learned

No time to do more than one or two. Welcome to do them all if you want.

Final Lab Oral — asked evidence of successful challenges (videos)

Not completing any challenges will limit your final lab oral grade to at best a B (fair to others)
All challenges are ranked in levels of difficulties (1 to 4)

L 2 4

L IR 2B 2B 4

PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 11

Challenges are created to allow you to demonstrate you have attained the
learning outcomes for this module. Therefore you are advised to complete
all 6 Labs and at least one or more challenges.

11

Challenge 1 — Noise Generator (level 1)

50MHz
bs[9:0
Linear Feedback prbs(9:01 data_in
Shift Register - DAC
pin 8 Audio
r en spiZdac MCP4921 Amplifier
tick
p |:+1 . load
b clk

¢ Hint: If you use the 9-bit PRBS from Lab 5, remember that the DAC is 10-bits. Beware of the
mismatch.

¢ Better to use a 10-bit PRBS implementing a primitive polynomial for 10-bits from the table
provided in the lecture notes.

PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 12

This should be very simple to do.

12

Challenge 2 — A real-time clock (level 2)

50MHz

sec_tick min_tick
Second counter — en — en

KEY[0] Minute counter KEY[1] Hour counter

—L—C set_min —I——c set_hr
hr_ctr l

Toggl !

quFse
¢ This is a simple challenge because you only use counters and a few extra modules.
¢ The tricky part is to have a way of setting minutes and hours.

~

min_ctr

PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 13

This challenge is easy to achieve but can be time consuming to finding an
effective way of setting the time.

13

Challenge 3 — Variable sinewave generator (level
2 or 3)

VOUT
DAC i i
. pin 8 Audio
coqver;lon _. r MCP4921 Amplifier
circuit

SW[9:0] =
Address A[9:0 D[9:0
counter £ A 1Kx10 » 19:0) data_in
(10-bit) ROM
spi2dac [
en clk

load

—1p clk
50MHz - tick
"E +1000 € !

¢ This challenge teaches you to design with a ROM as well. The level 3 attainment will involve the
translation of SW[9:0] to the actual frequency of the sinewave produced.

PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 14

This is a nice challenge that produces very pure sinewave that you can hear.
Try setting frequency to 440Hz — the tuning fork frequency of orchestras.

14

Challenge 4 — Formula 1 starting light
(level 4)

PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 15

This is a nice challenge that produces very pure sinewave that you can hear.
Try setting frequency to 440Hz — the tuning fork frequency of orchestras.

15

Challenge 4 — Formula 1 starting light
(level 4)

- ¥ o
8 8
MAX10_CLK1_50) P dk prbs 2 ™ |HEX0 | HEXa| 5/ /1
—_— 50000 |kams clk en_Ifsr o Ifsr g) Py A
. z : :
tick_halfs tick L
KEY[1] w fs N
m
= trigger pclk delay
ov J‘ start_delay trigger time_out
r me-out LEDR([9:0]
ledr
MAX10 FPGA N
ov

¢ This challenge is level 4 because it really tests every aspects of the digital part of the module. It
requires LFSR, FSM, counters, delay module, shift registers etc.

¢ Stretch goal allows you test your reaction time (in ms)

PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 16

This is not an easy challenge, but you will learn a lot and the end result will
be very satisfying.

Challenge 5 — Variable Delay Echo Synthesizer
(level 4)

Processor — variable delay echoes

offset correction

Echo synthesizer (feedback)
data_out[9:0]
—

50MHz
q[8:0]

y[9:1] +
——
8192x9

rdaddr[12:01 2-port RAM wdaddr([12:0]
> o

I——»rd?n wren
lenable

+ﬂ

{x)—

. +4 50MHz
- 13-bit
50MHz CTR

+ data_in[9:0]

data_valid

@ {SW[9:01,0,0,0}

¢ This challenge is based on an extension to Lab 6. Instead of FIFO, you use a RAM to implement
a variable delay block. Note also that you need to compute the delay in ms and display this!

PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 17

This is a great challenge which take what you did in Lab 6 further. The end
result is most satisfying. Play the long audio book and change the delay
value. You will hear the effect of echo very clearly.

17

Beyond the challenges — A Voice Changer

Delay by KA samples
" 7-KA -+ Ga
Sound _ Output with
source X(t) \ pitch changed
| Delay by KB samples y(t)
" 7-kB » Gy

Delay (ms)

393
1
KA 255 g
Don't GA
127 care

0

N\

Delay (ms)

1
. ~— SN NN
o \ o : /
tl 12 3 t4 t5

12.7

0 - -

PYKC 25 Nov 2025 EE2 Circuits & Systems Lecture 13 Slide 18

For those who are bored with Christmas vacation, here is a challenge beyond
all other challenges. You can construct a voice changer (one that changes the
pitch of a voice without change in speed) by implementing a system shown in
the slide. There are two delay blocks with variable delay changing in time as
shown above. You then mix the two signal paths with a variable gain.
Magically, the voice pitch will be changed.

| will demonstrate its effect during the lecture. It is quite impressive!

